The Piecewise Polynomial Partition of Unity Functions for the Generalized Finite Element Methods
نویسندگان
چکیده
Abstract A partition of unity (PU) function is an essential component of the generalized finite element method (GFEM). The popular Shepard PU functions, which are rational functions, are easy to construct, but have difficulties in dealing with essential boundary conditions and require lengthy computing time for reasonable accuracy in numerical integration. In this paper, we introduce two simple PU functions. The first is a highly regular piecewise polynomial consisting of two distinct polynomials that is effective for uniformly partitioned patches. The second is a highly regular piecewise polynomial consisting of three distinct polynomials which is for arbitrary partitioned patches.
منابع مشابه
The generalized product partition of unity for the meshless methods
The partition of unity is an essential ingredient for meshless methods named by GFEM, PUFEM (partition of unity FEM), XFEM(extended FEM), RKPM(reproducing kernel particle method), RPPM(reproducing polynomial particle method), the method of clouds in the literature. There are two popular choices for partition of unity: a piecewise linear FEM mesh and the Shepard-type partition of unity. However,...
متن کاملParticle–partition of Unity Methods in Elasticity
The particle–partition of unity method (PUM) [1, 2, 3, 4, 5, 8] is a meshfree Galerkin method for the numerical treatment of partial differential equations (PDE). In essence, it is a generalized finite element method (GFEM) which employs piecewise rational shape functions rather than piecewise polynomial functions. The PUM shape functions, however, make up a basis of the discrete function space...
متن کاملgH-differentiable of the 2th-order functions interpolating
Fuzzy Hermite interpolation of 5th degree generalizes Lagrange interpolation by fitting a polynomial to a function f that not only interpolates f at each knot but also interpolates two number of consecutive Generalized Hukuhara derivatives of f at each knot. The provided solution for the 5th degree fuzzy Hermite interpolation problem in this paper is based on cardinal basis functions linear com...
متن کاملMesh based construction of flat-top partition of unity functions
A novel idea to construct flat-top partition of unity functions in a closed form on a general (structured or unstructured) finite element mesh is presented. An efficient and practical construction method of a flat-top partition of unity function is important in the generalized finite element method (GFEM). Details on how to construct flat-top partition of unity functions on a provided mesh are ...
متن کاملRemarks on the Ciarlet-raviart Mixed Finite Element
Abstract. This paper derives a new scheme for the mixed finite element method for the biharmonic equation in which the flow function is approximated by piecewise quadratic polynomial and vortex function by piecewise linear polynomials. Assuming that the partition, with triangles as elements, is quasi-uniform, then the proposed scheme can achieve the approximation order that is observed by the C...
متن کامل